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Abstract

We develop the seventh-step predictor–corrector of exponential fitting method for the N-body problems. We apply our
proposed scheme to Kepler problem, the interaction of seven argon atoms in a plane and three particles bound together by
two springs of different stiffnesses. The three problems have various potential functions. We demonstrate the accuracy and
efficiency of our proposed scheme via comparison with other analytical and numerical results. The numerical results show
that the schemes are highly accurate and computationally efficient.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The N-body problem occurs in almost all branches of physics from studies on submicroscopic systems to
macroscopic ones (Bose–Einstein condensation, molecular oscillations, protein-folding, granular dynamics,
swarming, multilane traffic flow, galaxy formation, etc.). The problem is characterized by a set of coupled dif-
ferential (or difference) equations. N-body problems are difficult to solve. In fact, 2-body problem has a well-
known analytic solution [1], but N-body system is in general non-integrable [2]. The simulation of N-body
problems typically involves two classes of physical phenomena: those governed by long-range forces and those
governed by short-range forces [3]. Perhaps the best examples of these two extremes are gravity and gas
dynamics. In the gravitational problem, every particle affects every other particle. In a gas dynamics simula-
tion, each particle has a limited domain of influence which is much smaller than the entire computational
domain. These classes of simulations have different computational goals in the creation of N-body algorithms.
For gravitational forces, the computational goal is to reduce the work as much as possible with a controllable
amount of error. This task is a long-range search. For simulations of gas dynamics, the computational goal is
to identify as rapidly as possible all particles within a specified distance from the test particle. This task is a
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short-range search. Despite the fact that the long- and short-range problems represent different types of phys-
ical phenomena, there are many circumstances in which both gas dynamics and gravity are needed in the same
simulation. To approximately solve N-body problems, one often attempts to discretize the equations of
motion and study the evolution of the system numerically. However, discretization of a system of differential
equations typically leads to a loss of accuracy. This often necessitates the use of small time steps, so that many
iterations will be required.

In this paper, we develop high-order predictor–corrector of exponential fitting method for the N-body
problems. High-order methods have the advantage of smaller error constant in the truncation error. In the
last decade, the numerical schemes of exponential time differencing’’ (ETD) scheme [4,5] or called ‘‘exponen-
tial fitting’’(EF) [6] have been constructed in different ways. Explicit multistep exponential fitting with various
order accuracy were constructed [7,8]. Runge–Kutta EF schemes were derived [8–10]. Optimal implicit expo-
nentially-fitted Runge–Kutta methods and implicit ETD schemes of arbitrary order were developed [11,12]. In
addition, exponentially fitted variable two-step BDF algorithm for first order ODEs was constructed [13]. We
have developed the various order explicit and implicit multistep schemes of exponential fitting for systems of
ordinary differential equations [14,15]. Here, we apply high-order predictor–corrector of exponential time dif-
ferencing to Kepler problem, the interaction of seven argon atoms in a plane and three particles bound
together by two springs of different stiffnesses, which have various potential functions, and compare with other
analytical and numerical results. Although the scheme is neither reversible nor symplectic, the numerical
results show that the schemes are highly accurate and computationally efficient.
2. High-order predictor–corrector of exponential fitting (PCEF)

2.1. The derivation of high-order PCEF

We have derived explicit and implicit exponential time differencing schemes of arbitrary order [14,15]. Here,
we provide the seventh-step explicit and implicit exponential time differencing schemes.

The nth-order system of first-order differential equations for initial value problems in form
_y1 ¼ f1ðt; y1; . . . ; ynÞ;
..
.

_yj ¼ fjðt; y1; . . . ; ynÞ;

..

.

_yn ¼ fnðt; y1; . . . ; ynÞ.

8>>>>>>>><
>>>>>>>>:

ð1Þ
We introduce the vectors
y ¼ ðy1; y2; . . . ; ynÞ
T
; f ¼ ðf1; f2; . . . ; fnÞT.
Eq. (1) is expressed as
_y ¼ fðy; tÞ. ð2Þ

Introducing a constant matrix H, we rearrange Eq. (2) as
_y�Hy ¼ F; ð3Þ

where
F ¼ fðt; yÞ �Hy ð4Þ

and the constant matrix H should satisfy det(H) 6¼ 0.

We multiply (3) through by an integrating factor exp(�Ht), then integrate from tk to tk+1 to give
ykþ1 ¼ expðHhÞ � yk þ
Z tkþ1

tk

exp Hðtkþ1 � tÞ � FðtÞdt. ð5Þ
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Let tk+1 = tk+h, Eq. (5) is expressed as
ykþ1 ¼ expðHhÞ � yk þ
Z tkþh

tk

exp Hðtk þ h� tÞ � FðtÞdt. ð6Þ
Let t = tk+s, we have
ykþ1 ¼ expðHhÞ � yk þ
Z h

0

exp Hðh� sÞ � Fðtk þ sÞds. ð7Þ
Since the approximations yk�6, . . .,yk�1,yk at time points tk�6, . . ., tk�1, tk are known, the values
Fk�6, . . .,Fk�1,Fk at time points tk�6, . . ., tk�1, tk are also available by the formula (4). It is natural to replace
the function F(tk + s) in (7) by interpolating polynomial N(tk + s) through the points (tk,Fk), (tk�1,Fk�1), . . .,
(tk�6,Fk�6). The Newton interpolating polynomial formed through (tk,Fk), (tk�1,Fk�1), . . ., (tk�6,Fk�6) can be
expressed as
Fðtk þ sÞ � Nðtk þ sÞ ¼
X6

s¼0

ð�1Þs
X6

j¼s

ð�1Þj
�s
h

j

� �
j

s

� �
Fk�s; ð8Þ
where
�s
h

j

� �
¼

�s
h

� � �s
h � 1
� �

� � � �s
h � jþ 1
� �

j!
; and

�s
h

0

� �
¼ 1. ð9Þ
Inserting (8) into (7), we obtain the seventh-step explicit EF scheme
ykþ1 ¼ expðHhÞ � yk þ h ð�1Þ0
X6

j¼0

gj

j

0

� �" #
Fk þ h ð�1Þ1

X6

j¼1

gj

j

1

� �" #
Fk�1 þ � � � þ hg6Fk�6; ð10Þ
where
gj ¼
Z 1

0

exp Hhð1� sÞ � ð�1Þj
�s

j

� �
ds. ð11Þ
Considering Eq. (9), the seventh-step explicit EF scheme is consequently expressed as
ykþ1 ¼ expðHhÞ � yk þ hðg0 þ g1 þ g2 þ g3 þ g4 þ g5 þ g6ÞFk � hðg1 þ 2g2 þ 3g3 þ 4g4 þ 5g5 þ 6g6ÞFk�1

þ hðg2 þ 3g3 þ 6g4 þ 10g5 þ 15g6ÞFk�2 � hðg3 þ 4g4 þ 10g5 þ 20g6ÞFk�3 þ hðg4 þ 5g5 þ 15g6ÞFk�4

� hðg5 þ 6g6ÞFk�5 þ hg6Fk�6. ð12Þ
The coefficients g0,g1,g2,g3,g4,g5,g6 can be derived by Eq. (11).
g0 ¼ �
H�1

h
ðI� TÞ; ð13-aÞ

g1 ¼ �
H�1

h
I� H�1

h

� �2

ðI� TÞ; ð13-bÞ

g2 ¼ �
H�1

h
I� H�1

h

� �2
3

2
I� 1

2
T

� �
� H�1

h

� �3

ðI� TÞ; ð13-cÞ

g3 ¼ �
H�1

h
I� H�1

h

� �2
11

6
I� 1

3
T

� �
� H�1

h

� �3

2I� Tð Þ � H�1

h

� �4

ðI� TÞ; ð13-dÞ

g4 ¼ �
H�1

h
I� H�1

h

� �2
25

12
I� 1

4
T

� �
� H�1

h

� �3
35

12
I� 11

12
T

� �

� H�1

h

� �4
5

2
I� 3

2
T

� �
� H�1

h

� �5

ðI� TÞ; ð13-eÞ
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g5 ¼ �
H�1

h
I� H�1

h

� �2
137

60
I� 1

5
T

� �
� H�1

h

� �3
15

4
I� 5

6
T

� �

� H�1

h

� �4
17

4
I� 7

4
T

� �
� H�1

h

� �5

3I� 2Tð Þ � H�1

h

� �6

I� Tð Þ; ð13-fÞ

g6 ¼ �
H�1

h
I� H�1

h

� �2
49

20
I� 1

6
T

� �
� H�1

h

� �3
203

45
I� 137

180
T

� �
� H�1

h

� �4
49

8
I� 15

8
T

� �

� H�1

h

� �5
35

6
I� 17

6
T

� �
� H�1

h

� �6
7

2
I� 5

2
T

� �
� H�1

h

� �7

ðI� TÞ; ð13-gÞ
where T = exp(Hh).
The seventh-step explicit EF scheme is obtained by integrating the interpolation polynomial formed

through the points (tk,Fk), (tk�1,Fk�1), . . ., (tk�6,Fk�6) form tk to tk+1. The seventh-step implicit EF scheme
is also obtained by the interpolation polynomial which uses in addition the (tk+1,Fk+1).

Let tk = tk+1 � h, Eq. (5) is expressed as
ykþ1 ¼ expðHhÞ � yk þ
Z tkþ1

tkþ1�h
exp Hðtkþ1 � tÞ � FðtÞdt. ð14Þ
Let t = tk+1 � s, we have
ykþ1 ¼ expðHhÞ � yk þ
Z h

0

exp Hs � Fðtkþ1 � sÞds. ð15Þ
The Newton interpolation polynomial formed through (tk+1,Fk+1), (tk,Fk), . . ., (tk�5,Fk�5) can be expressed
as
Fðtkþ1 � sÞ � Nðtkþ1 � sÞ ¼
X6

s¼0

ð�1Þs
X6

j¼s

ð�1Þj
s
h

j

� �
j

s

� �
Fk�sþ1. ð16Þ
Inserting (16) into (15), we obtain the seventh-step implicit EF scheme
ykþ1 ¼ expðHhÞ � yk þ h ð�1Þ0
X6

j¼0

g�j
j

0

� �" #
Fkþ1 þ h ð�1Þ1

X6

j¼1

g�j
j

1

� �" #
Fk þ � � � þ hg�6Fk�5; ð17Þ
where the coefficients g�j satisfy
g�j ¼
Z 1

0

exp Hhs � ð�1Þj
s

j

� �
ds ¼

Z 0

�1

exp Hhð�sÞ � ð�1Þj
�s

j

� �
ds. ð18Þ
Considering Eq. (9) the seventh-step implicit EF scheme is consequently expressed as
ykþ1 ¼ expðHhÞ � yk þ hðg�0 þ g�1 þ g�2 þ g�3 þ g�4 þ g�5 þ g�6ÞFkþ1 � hðg�1 þ 2g�2 þ 3g�3 þ 4g�4 þ 5g�5 þ 6g�6ÞFk

þ hðg�2 þ 3g�3 þ 6g�4 þ 10g�5 þ 15g�6ÞFk�1 � hðg�3 þ 4g�4 þ 10g�5 þ 20g�6ÞFk�2 þ hðg�4 þ 5g�5 þ 15g�6ÞFk�3

� hðg�5 þ 6g�6ÞFk�4 þ hg�6Fk�5. ð19Þ
The coefficients g�0; g
�
1; g

�
2; g

�
3; g

�
4; g

�
5; g

�
6 can be derived by Eq. (18).
g�0 ¼ �
H�1

h
ðI� TÞ; ð20-aÞ

g�1 ¼ �
H�1

h
T� H�1

h

� �2

ðI� TÞ; ð20-bÞ

g�2 ¼ �
H�1

h

� �2
1

2
Iþ 1

2
T

� �
� H�1

h

� �3

ðI� TÞ; ð20-cÞ
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g�3 ¼ �
H�1

h

� �2
1

3
Iþ 1

6
T

� �
� H�1

h

� �3

I� H�1

h

� �4

ðI� TÞ; ð20-dÞ

g�4 ¼ �
H�1

h

� �2
1

4
Iþ 1

12
T

� �
� H�1

h

� �3
11

12
Iþ 1

12
T

� �

� H�1

h

� �4
3

2
I� 1

2
T

� �
� H�1

h

� �5

ðI� TÞ; ð20-eÞ

g�5 ¼ �
H�1

h

� �2
1

5
Iþ 1

20
T

� �
� H�1

h

� �3
5

6
Iþ 1

12
T

� �
� H�1

h

� �4
7

4
I� 1

4
T

� �

� H�1

h

� �5

2I� Tð Þ � H�1

h

� �6

ðI� TÞ; ð20-fÞ

g�6 ¼ �
H�1

h

� �2
1

6
Iþ 1

30
T

� �
� H�1

h

� �3
137

180
Iþ 13

180
T

� �
� H�1

h

� �4
15

8
I� 1

8
T

� �
� H�1

h

� �5
17

6
I� 5

6
T

� �

� H�1

h

� �6
5

2
I� 3

2
T

� �
� H�1

h

� �7

ðI� TÞ. ð20-gÞ
Here the arbitrary-precision arithmetic is used to calculated both gj and g�j . We use the seventh-step explicit
multistep EF method to obtain the predicted solution value, then use these predicted values in the correspond-
ing implicit method to obtain the corrected solution value. This combination is called the seventh-step predic-
tor–corrector EF method (PCEF7).

A multistep method normally needs the starting values. The starting values in the present multistep method
are evaluated by the second-order Runge–Kutta EF scheme (RKEF2).

In the foregoing, we have derived the formulae in matrix form. It is inconvenient to implement the matrix
calculation if the number of Eq. (1) n is very large. At this time, the matrix form cannot be adopted, and Eq.
(1) is transformed equally to the following form
_y1 � c1y1 ¼ F 1ðt; y1; . . . ; ynÞ;
..
.

_ym � cmym ¼ F mðt; y1; . . . ; ynÞ;
..
.

_yn � cnyn ¼ F nðt; y1; . . . ; ynÞ;

8>>>>>>>><
>>>>>>>>:

ð21Þ
where Fm(t,y1, . . .,yn) = fm(t,y1, . . .,yn) � cmym, m = 1,2, . . .,n.

In this case, the seventh-step explicit EF scheme is expressed as
ym;kþ1 ¼ expðcmhÞ � ym;k þ hðgm;0 þ gm;1 þ gm;2 þ gm;3 þ gm;4 þ gm;5 þ gm;6ÞF m;k

� hðgm;1 þ 2gm;2 þ 3gm;3 þ 4gm;4 þ 5gm;5 þ 6gm;6ÞF m;k�1

þ hðgm;2 þ 3gm;3 þ 6gm;4 þ 10gm;5 þ 15gm;6ÞF m;k�2 � hðgm;3 þ 4gm;4 þ 10gm;5 þ 20gm;6ÞF m;k�3

þ hðgm;4 þ 5gm;5 þ 15gm;6ÞF m;k�4 � hðgm;5 þ 6gm;6ÞF m;k�5 þ hgm;6F m;k�6. ð22Þ
The seventh-step implicit EF scheme is expressed as
ym;kþ1 ¼ expðcmÞ � ym;k þ hðg�m;0 þ g�m;1 þ g�m;2 þ g�m;3 þ g�m;4 þ g�m;5 þ g�m;6ÞF m;kþ1

� hðg�m;1 þ 2g�m;2 þ 3g�m;3 þ 4g�m;4 þ 5g�m;5 þ 6g�m;6ÞF m;k

þ hðg�m;2 þ 3g�m;3 þ 6g�m;4 þ 10g�m;5 þ 15g�m;6ÞF m;k�1 � hðg�m;3 þ 4g�m;4 þ 10g�m;5 þ 20g�m;6ÞF m;k�2

þ hðg�m;4 þ 5g�m;5 þ 15g�m;6ÞF m;k�3 � hðg�m;5 þ 6g�m;6ÞF m;k�4 þ hg�6F m;k�5. ð23Þ
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The coefficients gm,0,gm,1,gm,2,gm,3,gm,4,gm,5,gm,6, g�m;0; g
�
m;1; g

�
m;2; g

�
m;3; g

�
m;4; g

�
m;5; g

�
m;6 have similar expression as

Eqs. (13-a)–(13-f) and Eqs. (20-a)–(20-f). For example,
gm;1 ¼ �
c�1

m

h
� c�1

m

h

� �2

ð1� expðcmhÞÞ. ð24Þ
One may choose the matrix form PCEF7, also choose the non-matrix form PCEF7. If the matrix form is
adopted, a given system is transformed equally to Eq. (3) form. If not, the system is transformed equally
to Eq. (21).

For example, we consider Hamiltonians
Hðpi; qiÞ ¼
1

2
pT

i M�1P i þ f ðqiÞ; ð25Þ
where M is the N · N positive-definite mass matrix and f: RN! R is the potential energy.
The Hamiltonians becomes
_qi ¼ M�1pi

_pi ¼ �rqi
f ðqiÞ

(
i ¼ 1; . . . ;N . ð26Þ
When the matrix form PCEF7 is adopted, Eq. (26) is transformed equally to the following form
_qi

_pi

� �
� 0 M�1

I 0

" #
qi

pi

� �
¼

0

�qi �rqi
f ðqiÞ

� �
; ð27Þ
where I is the N · N identity matrix.
For this system,
H is 2N · 2N constant matrix, i.e.,
H ¼ 0 M�1

I 0

" #
� F ¼

0

�qi �rqi
f ðqiÞ

� �
.

It is seen that the matrix H is a constant matrix, which should satisfy det(H) 6¼ 0 and should not be
restricted to be diagonal. For a given system, the choice for the matrix H is easy. The matrix H depicts linear
part of the system.

When the matrix form is not adopted, Eq. (26) is transformed equally to the following form
_qi � qi ¼ �qi �M�1pi;

_pi � pi ¼ �pi �rqi
f ðqiÞ.

(
ð28Þ
The above derived formulae for coefficients gj, g�j seem to be complex. In fact, the present method is compu-
tationally very efficient. The coefficients g0,g1,g2,g3,g4,g5,g6 and g�0; g

�
1; g

�
2; g

�
3; g

�
4; g

�
5; g

�
6 are constant matrix and

independent of the right functions f(y, t) and F(y, t), and can be easily evaluated in advance. Like Adam–Bash-
forth–Moulton predictor–corrector method, our EF predictor–corrector method requires only new force eval-
uation per integration step. All the other values of force have been calculated for earlier approximations.

2.2. Implementation of PCEF7

We summarize the steps to implement the matrix form PCEF7 scheme for Eq. (3). A sketch of this method
is as follows

Step 0. Input: the matrix H,

the number first-order differential equations,
the time stepsize,
initial value,
start computation time;
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end computation time;
the right function f and F.
Step 1. Calculation the exponential matrix T and the explicit and implicit coefficients gj, g�j .
Step 2. Calculation the starting values F1,F2,F3,F4,F5,F6, using second-order Runge–Kutta EF scheme.
Step 3. Calculation the approximation yk+1 using the seventh-step explicit EF scheme, i.e., Eq. (12) as predic-

tor, then calculation Fk+1 based on Eq. (4).
Step 4. Improvement this approximation using the seventh-step implicit EF scheme, i.e. Eq. (19), then upload

Fk+1 based on Eq. (4).

In Appendix A, we give the outline of C++ code which shows this computation.

3. Examples and numerical results

Example 1. As an illustrative example, we consider the Kepler problem. The Kepler problem describes the
motion of two bodies which attract each other. For computing the motion of two bodies, we choose one of the
bodies as the center of our coordinate system; the motion will then stay in a plane and we can use two-
dimensional coordinates q = (q1,q2) for the position of the second body. Newton�s laws, with a suitable
normalization, then yield the following differential equations
€q ¼ � q1

q2
1 þ q2

2ð Þ3=2
; €q ¼ � q2

q2
1 þ q2

2ð Þ3=2
. ð29Þ
This is equivalent to a Hamiltonian system with the Hamiltonian
Hðp1; p2; q1; q2Þ ¼
1

2
ðp2

1 þ p2
2Þ �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ q2
2

p ; pi ¼ _qi. ð30Þ
Every solution of (29) satisfies the total energy conservation and the angular momentum conservation
1

2
ð _q2

1 þ _q2
2Þ �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ q2
2

p ¼ H 0; q1 _q2 � q2 _q1 ¼ L0. ð31Þ
For the comparison, we take the same initial condition and the parameter values as [16]. The numerical
schemes including the explicit Euler method, symplectic Euler method and implicit midpoint were applied
to (29) (see [16]). They evaluated their schemes by comparing exact solutions with numerical solutions (see
Fig. 1) and computing energy conservation. Here we use PCEF7 with a larger stepsize h = 0.05 to (29).
The simulation is run for a long time of t = 1200. Eq. (29) is transformed equally to the following matrix form
_q1

_q2

_p1

_p2

2
6664

3
7775�

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775

q1

q2

p1

p2

2
6664

3
7775 ¼

0

0

�p1 � q1

q2
1
þq2

2ð Þ3=2

�p2 � q2

q2
1
þq2

2ð Þ3=2

2
666664

3
777775. ð32Þ
Fig. 2 shows our numerical solutions. Figs. 3 and 4 show the values (H(pn,qn) � H(p0,q0)) as a function of
time (H(p0,q0) is initial energy) by Ref. [16] and our method, respectively. Figs. 1 and 3 are copied from [16].
From above figures, it is seen the PCEF7 shows considerably greater accuracy than the numerical schemes
Euler method, symplectic Euler method and implicit midpoint used in [16].

Example 2. We consider the interaction of seven argon atoms in a plane, where six of them are arranged sym-
metrically around a center atom (frozen argon crystal) (see Fig. 5). The total energy of the system is given by
Hðp; qÞ ¼ 1

2

X7

i¼1

1

mi
pT

i pi þ
X7

i¼2

Xi�1

j¼1

V ijðkqi � qjkÞ; ð33Þ



Fig. 1. Exact and numerical solutions of the Kepler problem.

Fig. 2. Numerical solutions obtained by PCEF7.
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where Vij(r) are given potential functions, here we choose the Lennard–Jones potential
V ijðrÞ ¼ 4eij
rij

r

	 
12

� rij

r

	 
6
� �

;

where eij and rij are suitable constants depending on the atoms.
We take the same units as [16] for our calculations, masses in [kg], distances in nanometers, and times

in nanoseconds. The initial conditions, the parameter values are given in Table 1, where kB =
1.380658 · 10�23 [J/K] is Boltzmann�s constant. The energy at the initial position is H0 = H(p0,q0) �
� 1260.2kB [J].



Fig. 4. Energy conservation obtained by PCEF7.

Fig. 3. Energy conservation.

Fig. 5. Frozen argon crystal.

Table 1
Parameters and initial conditions for Example 2

Particle masses mi = m = 66.34 · 10�27 [kg]
Initial positions (nm) r1 = (0.0,0.0), r2 = (0.02,0.39), r3 = (0.34,0.17), r4 = (0.36,�0.21), r5 = (�0.02,�0.40),

r6 = (�0.35,�0.16), r7 = (�0.31,0.21)
Initial velocities (nm/nsec) v1 = (�30,�20), v2 = (50,�90), v3 = (�70,�60), v4 = (90,40), v5 = (80,90), v6 = (�40,100), v7 = (�80,�60)
eij eij = e = 119.8kB [J]
rij rij = r = 0.341 [nm]
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The system of differential equations associated with Eq. (33) is expressed as
_qi ¼ pi
mi

_pi ¼ �
oV ij

oqi

(
i ¼ 1; 2; . . . 7. ð34Þ
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The numerical schemes including the explicit Euler method, symplectic Euler method and the Verlet method
(see [16]) were applied to (34). The integrations are done over an interval of length 0.2 [nsec]. They evaluated
their schemes by computing the error in the total energy (see Fig. 6), and they also calculated the temperature
with the formula (35).
T ¼ 1

2NkB

X7

i¼1

mik _qik
2. ð35Þ
Here the non-matrix form PCEF7 is also applied to (34). Figs. 6 and 7 show the values (H(pn,qn) � H(p0,q0))/
kB as a function of tn = nh given by Ref. [16] and our method, respectively. For the exact solution, this value is
precisely zero for all times. Figs. 8 and 9 show the numerical values of the temperature difference T � T0 with
T given by T0 � 22.72 [K] (initial temperature). In this problem, the temperature is not an exact invariant, and
fluctuates around a constant value. Figs. 6 and 8 are copied from [16].

Here the non-matrix form PCEF7 is also applied to (34). Figs. 7 and 9 show energy conservation and
temperature obtained by PCEF7, respectively. Both PCEF7 and the Verlet method need only one force
evaluation per integration step, so the computational effort for the verlet and the PCEF7 algorithm is same. It
is seen that PCEF7 shows the desired behavior.

Example 3. The third example is a one-dimensional simulation of three particles bound together by two
springs of different stiffnesses (see Fig. 10).

The potential energy of the system is
V ðx1; x2; x3Þ ¼
1

2
k1ðjx2 � x1j � l1Þ2 þ

1

2
k2ðjx3 � x2j � l2Þ2. ð36Þ
The parameters and initial conditions for this experiment are given in Table 2.
Fig. 6. The error in the total energy.

Fig. 7. The error in the total energy obtained by PCEF7.



Fig. 9. Computed the temperature obtained by PCEF7.

Fig. 10. Spring experiment, system of particles.

Table 2
Parameters and initial conditions for experiment

Particle masses m1 = m2 = m3 = 1
Initial positions x1 = �7, x2 = 0, x3 = 7
Initial velocities All particles at rest
Spring stiffnesses k1 = 16, k2 = 1
Equilibrium spring lengths l1 = 6, l2 = 6

Fig. 8. Computed the temperature.
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The initial total energy of the system is H0 = 8.5. The numerical schemes including the Verlet-I, Verlet-II
and Verlet-X defined in [17] were applied to this problem. The integrations were done over a long interval of
length 2000. They evaluated their schemes by computing the total energy (see Figs. 11 and 12), and quantified
the efficiency of their schemes by computing the number of force evaluations (see Fig. 14). Fig. 11 shows total
energy for the three methods with a fixed stepsize h = 0.01, and Fig. 12 shows total energy for the Verlet-I
method with a doubled stepsize h = 0.02. For Fig. 14, the average relative error in total energy (n) is computed
with the formula
n ¼ 1

s

Xs

i¼1

jH i � H 0j
jH 0j

;

where s is again the number of samples taken and Hi is the total energy at the time of sample i. Figs. 11, 12 and
14 are copied from [17]. Here, we choose the matrix form PCEF7 to this problem, also integrate to 2000 and
compare with [17]. Nine values of h are tested, geometrically increasing from h = 0.005 to 0.05. Fig. 13 shows
total energy for the PCEF7 with a fixed stepsize h = 0.05. Fig. 15 shows the average relative error in total en-
ergy (n) versus number of force evaluations.
Fig. 11. Total energy for the three methods with a stepsize h = 0.01.

Fig. 12. Total energy for the Verlet-I method with a stepsize h = 0.02.



Fig. 13. Total energy for the PCEF7 with a stepsize h = 0.05.
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The nonsymplectic methods Verlet-II and Verlet-X produce substantial energy drift after long-time
integration, even when stepsize h = 0.01. The Verlet-II does not experience this problem, when stepsize
h = 0.02. Our PCEF7 method conserves energy very well even when large steps are used (h = 0.05). From the
Fig. 14. The average relative error versus number of force evaluations [16].



Fig. 15. The average relative error versus number of force evaluations obtained by PCEF7.
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Figs. 11–15, it is seen the PCEF7 method shows considerably greater accuracy and efficiency than the
numerical schemes the Verlet-I, Verlet-II and Verlet-X in [17].
4. Conclusion

We have presented the seventh-step explicit EF scheme and the seventh-step implicit EF scheme. The sev-
enth-step explicit EF scheme and the seventh-step implicit EF scheme need only one force evaluation per inte-
gration step. We have applied the seventh-step predictor–corrector EF method to Kepler problem, the
interaction of seven argon atoms in a plane and three particles bound together by two springs of different stiff-
nesses. The three problems have various potential functions. In all cases, the seventh-step predictor–corrector
EF method gives desired results. The numerical results show that the scheme is very accurate and computa-
tionally efficient.
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Appendix A

The following is the outline of C++ code which shows how to implement PCEF7.

void inputinit( int* n, // the number first-order differential equations
int* in, // the step number of the scheme, here in=6
double* t0, // start computation time
double* tn, // end computation time
double* h, // the time stepsize
double** H, // the matrix H
double** y0  // initial value

) //Input function

void calF(
double t0,
double* y0,
int n,

 double* F,  // the right function F
) // calculation the right function F

void calf (
double t0,
double* y0,
int n,

 double* f,  //  the right function f
) // calculation the right function f

There are functions for matrix operation, for example,
void matadd ( ) // matrix add operation,

…
…

void matinverse ( ) // calculation 1−H , 

void calT ( ) //calculation T , 

void calgj ( ) // calculation explicit coefficients jg , 

void calgj2 ( ) // calculation implicit coefficients *
jg , 

void main( )
{ while((tk < tn) && (k <= in)) // tk is present time

{ Calculation the starting values kF using second-order Runge–Kutta EF

scheme };
while(tk < tn) 
{ Calculation the approximation 1+ky using the seventh-step explicit EF scheme

then calculation 1k+F ; 

Improvement this approximation using the seventh-step implicit EF scheme, then
upload 1+kF ; 

output to file;
 tk= tk+h;}

} 

Note: Here we only provide main functions.

References

[1] R.B. Mann, D. Robbins, T. Ohta, Exact relativistic two-body motion in lineal gravity, Phys. Rev. Lett. 82 (1999) 3738.
[2] M. Quito, C. Monterola Jr., C. Saloma, Solving N-body problems with neural networks, Phys. Rev. Lett. 86 (2001) 4741–4744.
[3] J. Waltz, G.L. Page, S.D. Milder, J. Wallin, A. Antunes, A performance comparison of tree data structures for N-body simulation,

Journal of Computational Physics 178 (2002) 1–14.



520 C. Tang et al. / Journal of Computational Physics 214 (2006) 505–520
[4] R. Holland, Finite-difference time-domain (FDTD) analysis of magnetic diffusion, IEEE Trans. Electromagn. Compat. 36 (1994) 32–
39.

[5] G. Beylkin, J.M. Keiser, L. Vozovoiy, A new class of time discretization chemes for the solution of nonlinear PDEs, J. Comput. Phys.
147 (1998) 362–387.

[6] B.J. McCartin, R.J. Mitchell, A numerical model of chaotic respiration, in: Proceedings of the Fourth Conference on Mathematical
Modeling in the Undergraduate Curriculum, University of Wisconsin, La Crosse, 2000.

[7] B.J. McCartin, Exponential fitting of the delayed recruitment/renewal equation, J. Comput. Appl. Math. 136 (2001) 343.
[8] S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002) 430.
[9] G.V. Berghe, L.G. Ixaru, H.D. Meyer, Frequency determination and step-length control for exponentially-fitted Runge–Kutta

methods, J. Comput. Appl. Math. 132 (2001) 95.
[10] T.E. Simos, A fourth algebraic order exponentially-fitted Runge–Kutta method for the numerical solution of the SchrÖdinger
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